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Various aspects of the effective Hamiltonian and intermediate Hamiltonian formulations are
discussed in the context of the Fock-space coupled-cluster method. Problems that occur
when single-reference methods of solving the Schrödinger equation need to be generalized
to the multireference (MR) cases are pointed out. These problems make the generalization
nontrivial, especially in the case of the most powerful coupled-cluster (CC) method. It is
shown how some specific features of one of the basic MR-CC schemes, the Fock-space CC
method, can be used to obtain a simple, yet very effective version of the method. This re-
quires, however, switching from the effective Hamiltonian to the intermediate Hamiltonian
formulation. The intermediate Hamiltonian version of the Fock-space CC method is dis-
cussed in detail and all its advantages over the standard one are emphasized.
Keywords: Ab initio calculations; Multi-reference coupled-cluster; Fock-space coupled-cluster;
Intermediate Hamiltonian.

The single-reference quantum chemical methods are now being used in
routine calculations. Among them the coupled-cluster (CC) methods1 have
demonstrated to be the most promising tools for the treatment of electron
correlation effects, especially if high accuracy results are required2. The suc-
cess of the single-reference (SR) CC methods in describing closed-shell sys-
tem has inspired an intensive research activity towards a generalization of
the CC schemes to multireference (MR) cases3–19. That would allow applica-
tion of CC methods to open-shell and quasi-degenerate states, which are
characterized by a large component of nondynamic correlation. The non-
dynamic correlation is difficult or, in most cases, even impossible to handle
by the single-reference methods. Thus the multireference schemes should
introduce a distinction between descriptions of nondynamic and dynamic
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correlation effects. This goal can be achieved by using the effective
Hamiltonian formalism20,21, in which the dynamic correlation is repre-
sented by the so-called wave operator. The wave operator generates this
component of the wave function for which an approximate description,
like finite-order perturbation expansion or cluster expansion with the clus-
ter operator truncated at some level of excitation, is sufficiently accurate.
The wave operator is folded into the effective Hamiltonian, the action be-
ing restricted to a small space spanned by strongly interacting zero-order
functions. The nondynamic contribution to the electron correlation is pro-
vided by diagonalization of the effective Hamiltonian. The diagonalization
furnishes a subset of eigenvalues of the Hamiltonian. The distinction made
by the effective Hamiltonian formalism in treating both types of electron
correlation may be seen as an efficient way of providing information about
dominant and less important components of the wave functions. However,
the success of this kind of approach depends to a large extent on clear sepa-
ration of both correlation effects, which may be difficult to achieve because
of formal or practical reasons. Another problem caused by the effective
Hamiltonian approach is the necessity of describing several states at a time
even if we are interested only in one of them. Multidimensional reference
spaces make also the Fermi vacuum choice nontrivial which resulted in de-
velopment of two different types of MR-CC schemes8,15.

Because of their formal complexity, high numerical costs and problems
caused by the so-called intruder states22, the MR-CC methods have not
been very widely used in routine calculations. One of possible ways of mak-
ing the MR-CC methods more attractive is to reformulate them by employ-
ing intermediate Hamiltonian techniques21,23. The idea underlying the
intermediate Hamiltonian approach is to extend diagonalization as a way
of providing contributions to the correlation energy. Now the diagonal-
ization gives contributions not only from the reference space but also from
an additional intermediate space which plays a role of a buffer between the
reference space and the remaining part of the functional space. The inter-
mediate space should contain all functions which can cause convergence
problems. There have been many attempts to use the intermediate
Hamiltonian technique with respect to both basic MR-CC schemes24–26 in-
cluding most recent ones27–29.

In this paper we would like to show why the intermediate Hamiltonian
reformulation of the Fock-space (FS) CC method (one of the two basic
MR-CC schemes) can be especially advantageous in removing most draw-
backs of the standard effective Hamiltonian formulation and how some
specific features of the FS-CC method can be used to obtain a simple, yet
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very effective intermediate Hamiltonian scheme. We start with general re-
marks on the problem of solving the time-independent Schrödinger equa-
tion within an algebraic approximation focusing on the problem of
extracting an eigenvalue problem corresponding to a single state. After in-
troducing basic single-reference approaches we show why a direct general-
ization of such methods like the many-body perturbation theory or CC
method to the multireference case leads to effective Hamiltonian formula-
tions and thus to the necessity of considering several states at a time. Then
we discuss the standard effective Hamiltonian formulation of the FS-CC
method with one- and two-body part in the cluster operator in more detail
emphasizing those specific features of the method which are important for
our intermediate Hamiltonian reformulation. The effective and intermedi-
ate Hamiltonian versions of the FS-CC method are introduced by consider-
ing simple similarity transformations of the Hamiltonian21. That permits
better understanding of many aspects of both approaches. We summarize
with showing that advantages of the new approach like, first of all, its
state-specific character and an efficient way of solving the equations indi-
cate that the method can be potentially used in routine quantum chemical
calculations.

SOLVING THE TIME INDEPENDENT SCHRÖDINGER EQUATION

Let us consider the time-independent Schrödinger equation

HΨ = EΨ , (1)

assuming an algebraic approximation. The finite-dimension functional
space used to represent Ψ is indirectly defined by a choice of the primitive
orbital basis set. The functional space for an N-electron system is spanned
by all possible determinants involving N spin orbitals out of all available.
Having matrix representation of the Hamiltonian H in this space, all solu-
tions of Eq. (1) can be found by its diagonalization. Diagonalization of the
matrix representation of H is numerically demanding and it is easy to see
that enlarging the orbital basis rapidly increases the dimension of the func-
tional space. On the other hand, obtaining all solutions of the Schrödinger
equation is usually not reasonable. First of all, in most cases we are inter-
ested in description of one or several states and, second, in practice it is not
possible to get good quality results for all states due to limitations in choos-
ing the orbital basis set. Thus, the problem is extraction of the eigenvalue
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problem corresponding to one or several states we are interested in from
the complete eigenvalue problem, Eq. (1). To do so, some initial approxi-
mate information of the system under investigation would be desirable.
This information can be provided by a reasonable one-particle description.
Let us assume for a while that we are interested in the closed-shell ground
state of the system. Since Eq. (1) is invariant with respect to a unitary trans-
formation of the orbitals we can proceed to a new orbital set satisfying
some criterion. If we require that the orbital set should be such that the en-
ergy functional with the determinantal function gives a minimum, then
one can obtain one of the most popular Hartree–Fock (HF) orbitals. It
should be noted here that the HF orbitals are only one of possible choices
of orbitals satisfying the requirement since the HF energy is invariant with
respect to separate unitary transformations of the occupied and unoccupied
orbitals in the HF determinant. The requirement introduces only a parti-
tioning of the orbital space into two subspaces, which is known as the
Brillouin condition. The HF determinant can be used as a reference to gen-
erate all other determinants spanning the functional space. They can be ob-
tained by single, double, etc., up to N-uple substitutions of occupied spin
orbitals with unoccupied ones in the HF determinant Φ; so the ground state
function can be expressed as

Ψ = (1 + X1 + X2 + ... + XN)Φ , (2)

where Xi is the operator of all possible i-uple substitutions (excitations) as-
sociated with the coefficients which should be determined from Eq. (1).
Equation (2) introduces the so-called intermediate normalization for Ψ

〈ΦΨ〉 = 〈ΦΦ〉 = 1 . (3)

Assuming that the HF determinant Φ is the best approximation to Ψ among
functions having determinantal form, one can expect that coefficients con-
tained in Xi should be relatively small and thus easy to determine from
Eq. (1) in a self-consistent manner. A set of equations for Xi can be obtained
by projecting Eq. (1) on the HF and excited determinants and the number
of them is equal to the number of unknowns, i.e., the ground state energy
and the coefficients. Denoting by i, j, ... and a, b, ... indices of occupied and
unoccupied spin orbitals in Φ, one has
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E = 〈Φ|H(1 + X2)Φ〉 (4)

〈Φ Φi i i
a a a

k k kk

k H X X X E
1 2

1 2
2 2... | ( ... ) |K

− ++ + − 〉 = 0 , (X0 = 1, Xi = 0, i < 0) , (5)

where Φi i i
a a a

k

k

1 2

1 2
...

K stands for excited determinants and two sets of indices indi-
cate the substitution. Both the Brillouin theorem and at most two-particle
character of H are used here. Only X2 contributes to the energy expression
directly, all other Xi affect the energy through X2. Following the
Møller–Plesset partitioning of H into the diagonal zero-order part H0 and
the perturbation V, and introducing perturbative expansion for E, it can be
seen that up to and including the third order, only X2 contributes to the
energy. Contributions from other excitations appear in the fourth and
higher orders. Equation (5) can be rewritten in the form

〈Φ Φi i i
a a a

kk

k X
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... | |K 〉 =

+ + + − − − −
1

1 2 1 2
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×

〈Φi i i
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k V X X X E E
1 2

1 2
2 2

0
... | ( ... ) ( )| )K

− ++ + − − Φ〉 = 0 , (6)

where E0 = 〈Φ|H0Φ〉 and εl is the orbital energy associated with the l-th spin
orbital. Using this expression one can start iterative procedure with some
initial guess used for X2, for example, with its first-order estimate, and with
putting all other Xi equal to zero on the right-hand side of Eq. (6). That
produces the lowest, second-order contributions to X1, X3 and X4 which,
when used in the next iteration in equation for X2, give the third-order
contributions to X2, thus the fourth-order ones to E. The subsequent itera-
tions produce contributions corresponding to higher and higher excita-
tions. Assuming that the perturbation expansion is fast-converging, one
can expect to reach convergence with a desired accuracy in several itera-
tions. In this way one can extract the ground-state eigenvalue problem
from the complete eigenvalue problem given by Eq. (1) and solve it. This is,
of course, one of the simplest schemes; for example, one can find many
more sophisticated ones built into single-root diagonalization procedures.
In all of them the idea, however, is to obtain a state-specific algorithm.
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The above considerations show how one can concentrate on a single
state at a time and obtain the exact solution within the algebraic approxi-
mation. But even that is still numerically very demanding, which limits the
dimension of the orbital space we can use. However, our perturbative anal-
ysis shows that the numerical effort can be drastically reduced if we include
only doubly substituted determinants in the expansion (2). This is because
of the specific role the double excitations play in the expansion which can
be attributed to, at most, the two-particle character of the Hamiltonian.
Namely, the doubly excited determinants span the first interacting space,
meaning that the only nonzero matrix elements of the Hamiltonian with
the HF determinant are those of doubly excited determinants. Thus, ne-
glecting Xi for i ≠ 2 should give a reasonable approximation to the exact en-
ergy leading to a tremendous numerical savings. The method is known as
the configuration interaction (CI) method with doubles (CID). The scheme
which, in addition, includes single excitations (CISD) is one of the basic CI
methods. The configuration interaction methods are variational since all of
them can be obtained from a variational principle applied to the energy ex-
pectation value functional. The variational character of the CI approach
guarantees obtaining an upper bound to the exact energy. The accuracy of
CI schemes can be systematically improved by including additional excita-
tions in the expansion reaching in the limit the exact solution for a given
ab initio model. While the CI schemes are variational, they do not possess
another property, which is nowadays considered very important, namely
size-extensivity. The size-extensivity of a method guarantees that the en-
ergy of a supersystem consisting of noninteracting subsystems is a sum of
the energies of the subsystems. This can be essential, for example, for de-
scription of the dissociation processes and for extended systems. Two other
categories of approximate methods, many-body perturbation theory (MBPT)
and coupled-cluster method, are size-extensive although, in general, they
are not variational. In particular, the CC method provides a powerful com-
putational scheme due to the exponential expansion used to represent the
wave function

Ψ = exp (T)Φ (7)

T Ti
i

N

=
=
∑ ,

1

(8)
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where Ti is the excitation operator defined in a way similar to that of Xi.
The advantage of this expansion is that it introduces description of higher
excitations via products of lower excitation-rank cluster operators. For ex-
ample, the basic computational CC scheme, the CC method with singles
and doubles (CCSD : T ≈ T1 + T2) provides a reliable approximation to qua-
druple excitations through (1/2)T2

2 , which significantly increases accuracy
compared with CISD although the number of unknown coefficients is the
same in both approaches. Because of that the CC methods have become
one of the standard tools in high-accuracy quantum chemical calculations.

All the above approximate methods are based on the assumption that the
wave function Ψ is dominated by a single determinant Φ. Then Φ serves as
a single reference to generate a reliable approximation to Ψ. In many cases,
however, Ψ cannot be well approximated by a single determinant. This is
the case when we have to deal with open-shell or quasi-degenerate situa-
tions. The perturbative arguments indicating that double excitations out of
Φ should predominate the expansion, Eq. (2), are not valid when the im-
portance of one or several determinants become comparable with that of Φ.
In such a case one can at least expect much slower convergence of the
single-reference perturbation expansion and thus the importance of higher
than double excitations can be significant. In spite of the fact that the
CCSD method can quite efficiently deal with some low degree of quasi-
degeneracy, the quality of the results deteriorates rapidly when this degree
becomes higher. One of ways of improving the accuracy of the single-
reference methods is the inclusion of higher than double excitations in the
expansion. For example, within the CI framework, that would comprise
first of all X3 (CISDT) and X4 (CISDTQ), which produce fourth-order contri-
butions to the energy. However, that preserves the single-reference charac-
ter of the method and does not take into account that the zero-order
functions of approximately equal importance should be treated on the
same footing. A natural solution to the problem is to replace the single-
reference determinant Φ with a multidimensional reference (or model)
space M spanned by determinants Φα (α = 1, ..., m) dominating the wave
function. By taking a linear combination of the reference space functions
and all other determinants which are singly or doubly substituted with re-
spect to at least one of them to represent Ψ, we ensure equal treatment of
all functions from the reference space. Note that the same excited determi-
nant can be reached by excitation operators from different reference func-
tions; so if one insisted on introducing excitation operators associated with
each reference function (Xi

α , i = 1, 2, k = 1, ..., m), the number of un-
known coefficients would exceed the dimension of the selected space and
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to determine all of them, one would have to consider several (m = dim M)
states at a time. This can be, however, avoided by taking a linear combina-
tion of the reference determinants and selected excited determinants,
which makes coefficients in the expansion reference-function independent.
In such a case Xi

α (i = 1, 2) are used to select the outer space only. The sim-
plification is possible if the reference space and outer space determinants
are treated in the same way in the expansion. Again the importance of sin-
gle and double excitations out of the reference space can be justified by us-
ing perturbative arguments, this time, however, of a multireference
character. The method is known as the multireference CISD (MR-CISD) and
is much more effective than CISDT or CISDTQ. The approach is conceptu-
ally very simple and does not differ much from its single-reference counter-
part. Again single-root diagonalization procedures can be used to solve the
equations. The MR-CISD method is not size-extensive because of the linear
expansion used to represent Ψ.

The situation might be not so simple if, assuming that Xα = ∑i Xi
α α α| |Φ Φ〉〈

is relatively small for all α = 1, ..., m, one wants to use a perturbation or
coupled-cluster expansion in the multireference context. The assumption
can be considered justified if the reference space is energetically well sepa-
rated from the orthogonal space. In order to use many-body techniques to
represent Xα, it is necessary to select a Fermi vacuum. In the single-
reference case the choice was obvious, all excitation operators being de-
fined as spin orbital replacement operators with respect to the reference HF
determinant. Now we have several reference functions so there is no natu-
ral choice for the vacuum. Basically two strategies can be followed in such a
case. The first one is to select a single Fermi vacuum30 for all Xα while the
second one is to define Xα with respect to Φα as a vacuum31. Obviously,
within the first option different choices are possible32,33, which will be dis-
cussed later.

Since the excitation operators Xi
α are doubly indexed, the number of un-

knowns is excessively large to be, as before, used for describing a single
state. To calculate Xi

α with a given excitation level and explore all the infor-
mation they contain, we have to consider an eigenvalue problem for m
states simultaneously. Indeed, taking a linear combination of the reference
functions Φα to represent the zero-order function Ψ0

Ψ Φα
0

1

=
=

∑ c
m

α

α

, (9)
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using it to generate Ψ

Ψ Ψ Φ= + = +
= =

∑ ∑∑( ) ( ) ,1 1
1

0
1

X X c
m

i
i

m
α

α

α α α

α

(10)

inserting it into the Schrödinger equation, Eq. (1), and projecting on the
model space with the projection operator P = ∑α Pα = ∑α | |Φ Φα α〉〈 and on the
complementary space, we have

PH(1 + X)PΨ0 = EPΨ0 (11)

Q H X XE Pi
i

α

α

α∑ + − =[ ( ) ]1 00Ψ (12)

X X= ∑ α

α

, (13)

where Qi
α is the projection operator on a subspace of the complementary

space spanned by determinants of excitation level i with respect to Φα. By
inserting Eq. (11) into Eq. (12)

Q H X XPH X Pi
i

α α

α

[ ( ) ( )] ,1 1 00+ − + =∑ Ψ (14)

and assuming that eigenfunctions Ψ Ψ0
k kP= (k = 1, ..., m) (the so-called

model functions) of the PH(1 + X)P operator are linearly independent, the
coupling between two sets of equations can be removed

Q H X XPH X Pi
i

α α∑ + − + =[ ( ) ( )] .1 1 0 (15)

Equation (15) is a complete set of equations from which all Xi
α can be de-

termined. The PH(1 + X)P operator acts entirely in the model space and, in
the limit of having all excitations included in X, its eigenvalues are a subset
of the eigenvalues of H. Because of that the operator is called the effective
Hamiltonian

Heff = PH(1 + X)P . (16)
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One may say that one of the basic reasons for which we deal with the de-
scription of several states at a time is a different treatment of the so-called
dynamic and nondynamic correlation. While the nondynamic correlation
effects, which might be associated with the model space contributions to
the wave function, due to their significance and dominant character should
be determined “exactly”, i.e., by diagonalization of some effective operator,
the remaining, dynamic, part coming from the outer space, can be evalu-
ated in an approximate way. Note that the MR-CISD method treats both ef-
fects in the same manner so the effective Hamiltonian formalism is not
required.

As mentioned, the excessive number of unknowns in the doubly indexed
operator Xi

α is the main cause for having a formalism which is not state-
specific. There have been some attempts to overcome the problem within
the perturbation theory34,35 and coupled-cluster36 frameworks. Even within
the MR-CI method, some further simplifications concerning effective di-
mension of the outer space are possible37. The basic idea underlying most
of these approaches is to make the excitation operators in X = ∑α Xα univer-
sal, i.e., to release the restriction that Xα can act only on Φα. That is possible
assuming that Xα is defined as a second-quantized operator. Then the (1 +
X) operator acts directly on a linear combination of the reference functions
with fixed (contracted) coefficients. Comparing with the previous defini-
tion of X, also internal (within the reference space) excitations must be ad-
mitted. Excitation operators generate functions which are, in general,
linearly dependent, so the next step is to remove the linear dependence by
eliminating some of the functions. Usually, the multiconfiguration self-
consistent-field (MC SCF) function is used as the reference function in
these approaches. All that has been directed towards formulating and im-
plementing a multireference scheme that would be as close as possible to its
single-reference counterpart. Another direction that should be mentioned
is an attempt to extend applicability of the single-reference methods and
make them more efficient in dealing with some significant degree of quasi-
degeneracy. That includes the so-called state-specific multireference CCSD
methods38,39 in which the concept of the reference space is used within the
standard single-reference framework only to select higher than doubly ex-
cited operators in T as those which represent single and double excitations
with respect to other than HF reference determinants. The dynamic and
nondynamic correlation effects are treated here in the same single-reference
manner. An idea of separating calculation of dynamic and nondynamic
correlation underlies the so-called externally corrected CCSD (ecCCSD)40,41

and reduced multireference CCSD (RMR CCSD)42 methods. The latter uses
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the MR-CISD method to evaluate nondynamic correlation effects and then
the information is transferred via T3 and T4 operators calculated from the
MR-CISD coefficients to the SR-CC method which corrects the description
of dynamic correlation. In a similar way, the SR-CC based corrections to
MR-CISD are formulated43. The same goal of obtaining more reliable de-
scription of a system in quasi-degenerate situations led recently to formula-
tion of the so-called renormalized CC corrections44,45. It seems, however,
that all these and other similar approaches have their limitations; so further
effort directed towards making genuine multireference formulations more
attractive seems required. This is especially true with respect to the most ef-
fective CC schemes. Moreover, many times we are interested not only in
the ground state but also in excited states, so a method capable of describ-
ing low-lying excited states in an efficient manner would be desirable. In
the following we would like to show how the intermediate Hamiltonian
technique can resolve many problems plaguing the original formulation of
the Fock-space coupled-cluster method. The FS-CC method is one of the
two basic MR-CC schemes, namely, that associated with the choice of a sin-
gle Fermi vacuum for all reference determinants.

BASICS OF THE FOCK-SPACE COUPLED-CLUSTER METHOD

The effective Hamiltonian formalism leads to extraction of the eigenvalue
problem corresponding to several states from the complete eigenvalue
problem of H. While our previous considerations were focused on the wave
function analysis, the separation problem can also be solved using simple
similarity transformations21. Let us assume a partitioning of the functional
space into the reference space M and its orthogonal complement M⊥ with
the projection operators P and Q, respectively, and consider a similarity
transformation of the Hamiltonian H within the entire space

~
H HX X= −e e (17)

X = QXP . (18)

Obviously, both, H and
~
H, have the same eigenvalues. We require the trans-

formed Hamiltonian
~
H to fulfil

QHP
~

,= 0 (19)
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and the number of the X parameters permits satisfying the condition. From
Eq. (18), one has Xk = 0 for k ≥ 2, so Eq. (19) can be written as

Q(1 – X)H(1 + X)P = Q[H(1 + X) – XH(1 + X)]P = 0, (20)

which is equivalent to Eq. (15) obtained within the wave function ap-
proach for the excitation operator X. The structure of the transformed
Hamiltonian

~
H shows that the eigenvalue problem of H has been separated

into two subproblems. All eigenvalues of H can be now obtained by sepa-
rate diagonalizations of P

~
HP and Q

~
HQ blocks. Indeed, if one performs sub-

sequent transformation of H

~~
( )

~
( )H S H S= − +1 1 (21)

S PSQ= , (22)

requiring

PHQ
~~

,= 0 (23)

then it is easy to see that

PHP PHP
~~ ~= (24)

QHQ QHQ
~~ ~= (25)

QHP QHP
~~ ~

.= = 0 (26)

So the second transformation, which leads to a block diagonal structure,
changes only the PQ block by putting it equal to zero. Since diagonal blocks
are identical, then all eigenvalues of

~~
H can be obtained by separate dia-

gonalizations of PHP
~

and QHQ
~

. Assuming that we are interested in several
eigenvalues only, we can restrict ourselves to diagonalizing PHP

~
. In this

way the eigenvalue problem corresponding to several eigenvalues can be
extracted. It is easy to notice that PHP

~
= PH(1 + X)P is identical with the ef-
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fective Hamiltonian Heff, Eq. (16). The equation for X, Eq. (20), is quadratic
in X and has many solutions. For different solutions, all eigenvalues of H
are differently divided into two subsets as those given by PHP

~
and those

given by QHQ
~

. The phenomenon is known as the multiple solution prob-
lem17,46–48. The problem of convergence of Eq. (20) to a desired solution49

(corresponding to a set of eigenvalues of interest) is one of the aspects of
the intruder state problem.

While within the similarity transformation formulation, the problem of
all eigenvalues of H is well defined, the effective Hamiltonian approach
based on the wave function formulation refers only to one of the two
subproblems. In this way information of the remaining eigenvalues, which
can be useful in some cases14,47, is lost. Note that diagonalization of QHQ

~

provides a subset of the eigenvalues of H without the necessity of determin-
ing the wave functions, which requires an additional calculation of the S
operator from Eq. (23).

The next step comprises a suitable parameterization for X. Because of the
success of the coupled-cluster method in its single-reference version, an ex-
ponential expansion for (1 + X)P seems preferable. Since cluster operators
are defined as second-quantized operators they require selection of a Fermi
vacuum. Two possible choices mentioned above lead to two multireference
versions of the CC method. The first one assumes that (1 + X)P is defined as

( ) ( ) ,1 1
1 1

+ = + =
= =

∑ ∑X P X P P
m

T
m

α α

α

α

α

α

e (27)

and Tα is a second-quantized excitation operator substituting spin orbitals
occupied in Φα with unoccupied ones. The only restriction is that the exci-
tation cannot generate another reference determinant so it must lead out-
side the model space M. The definition is very similar to that of T in the
single-reference case; thus a significant part of the resulting CC equations
resembles the SR-CC equations. The remaining part, the so-called renormal-
ization term, has more complicated structure and couples sets of equations
for different α (see the second term in Eq. (15)).

The restriction that PTαPα = 0, in general, does not imply that PXP = 0.
That holds for the complete model spaces. The definition of the complete
model space is based on partitioning the orbital space into three classes:
core orbitals which are occupied in all Φα, active orbitals which are occu-
pied in some but not in all of them, and virtual orbitals which are unoccu-
pied in the model space determinants. The complete model space is
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spanned by determinants with all possible distributions of valence (active)
particles among active spin orbitals. In such a case the so-called intermedi-
ate normalization holds, meaning that P∑α eT α

Pα = P. For the incomplete
model spaces, the intermediate normalization must be abandoned to pre-
serve connectivity of the CC equations and size-extensivity of the method.
The approach is called the Hilbert-space (HS) or state-universal CC method.

Unlike the Hilbert-space CC method, the Fock-space or valence-universal
CC formalism assumes a single Fermi vacuum for all reference functions. As
a consequence, all reference determinants must be first generated from the
vacuum. These generator operators are not, in general, particle-number
conserving. The Fermi vacuum can be selected in many different ways and
so many versions of the FS-CC method can be formulated; however, the ba-
sic assumption for all of them is to have a single determinant as a vacuum.
Let us focus our attention on some specific version, namely, when the de-
terminant built from the core spin orbitals serves as a vacuum. If Nc is the
number of core spin orbitals, then to have a complete model space as de-
scribed above, Nv = N – Nc valence particles must be created on active (va-
lence) spin orbital levels. So functions spanning the complete model space
can be generated by applying all possible sequences of Nv active spin orbital
creation operators on the core determinant Φc

Φ Φα α= W c , (28)

where Wα contains a sequence of Nv creation operators (a†) of active spin
orbitals occupied in Φα. Excitation operators are defined through the
normal-ordered product of particle-hole creation and particle-hole annihi-
lation operators. Unlike the single-reference and Hilbert-space cases, where
the cluster operators T and Tα consist of particle-hole creation operators
only, now the excitation operators can contain a sequence of particle-hole
annihilation operators. We can distinguish simple excitations form Φα in-
volving creation operators only, which generate a hole in the core and a
particle on the unoccupied (valence or virtual) spin orbital level or several
such particle-hole pairs. Valence particles appearing in Φα remain un-
changed by the excitation and, of course, all functions from the orthogonal
space cannot be reached in this way. Excitations from the core give only
those determinants from the outer space that contain all valence spin
orbitals occupied in Φα. Thus additional types of excitation operators are
necessary to allow replacing valence spin orbitals appearing in Φα with
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other, unoccupied in Φc, spin orbitals. These operators must contain va-
lence spin orbital annihilation operators. The second-quantized excitation
operators from the reference determinants can be expressed as

N a a a a a a a a aa i a i a i a A ak k k k
[( )( )...( )( )...(† † † †

1 1 2 2 1 1+ + l l
aA

† )] , (29)

where, in addition to the previously introduced notation (i, j, ... – occupied,
a, b, ... – unoccupied in Φc); we use A, B, ... for unoccupied active (valence)
spin orbitals. The particle-hole annihilation operators are defined as

A a A ai i a a= =† , . (30)

N[...] puts second-quantized operators in the normal order with respect to
the core determinant Φc which means that A† operators are followed by A
operators in the product, so contractions between them are not possible.
Index k runs from δ0l to the number of core spin orbitals Nc, while index l
can be from 0 to the number of valence particles Nv. In case of k = 0, all
spin orbital indices cannot be active since then the excitation leads to other
reference function. One can classify the excitations (29) according to their
particle rank k + l (number of pairs of creation and annihilation operators)
and their valence rank l. To form the cluster operator S we have to associate
cluster amplitudes with the excitation operators. Then S can be written in
terms of the valence rank l and the particle rank k + l as

S S l

l

N

=
=
∑ ( )

0

v

(31)

S Sl
k l

l

k

N

l

( ) ( ) .= +
=
∑

δ0

c

(32)

A redundancy problem can be noticed while analyzing the S definition,
namely, the same excited determinant can be generated by several cluster
operators Sk l

l
+

( ) while acting on Φα like, for example, (a aa i
† ) and (a aa i

† )(a aA A
† )

associated with S1
0( ) and S2

1( ) , respectively. Note that the problem is slightly
different from that discussed in the context of the HS-CC method. Now the
same excited determinant can be reached by applying several different clus-
ter operators on the same reference function Φα. The other difference is
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that the cluster operators can act on any Φα so there is no restriction similar
to that in the HS-CC method and the cluster operator S can be called uni-
versal. This universality can be even extended if one, to resolve the redun-
dancy problem, makes the cluster operators valence universal. However, to
reach this point let us first use S in the exponential expansion. It can be
seen immediately that due to the presence of particle-hole annihilation op-
erators (aA = AA) a simple form eS admits contractions between S. To avoid
this, it is convenient to use the normal-ordered form N[eS] which, as can be
shown, is general and can be obtained by performing all possible contrac-
tions in eS according to generalized Wick’s theorem and then through rede-
fining the cluster operator by collecting all connected terms of the same
particle rank4,5. The normal-ordered form prevents contractions between
the cluster operators now. Moreover, since S(0) does not contain any particle-
hole annihilation operators and, hence, cannot be contracted with any other
cluster operator, then

( ) [ ]
( )

1
0

+ = ′X P N PS Se e (33)

′ = + +S S S( ) ( ) ....1 2 (34)

Using this form in Eqs (16) and (20) but premultiplying the equations from
the left by e −S ( )0

before projecting them on M and M⊥ , we have

QHP Q HN N PHN PS S S~
( [ ] [ ] [ ])= − =′ ′ ′e e e 0 (35)

H PHP PHN PS
eff e= = ′~

[ ] (36)

H HS S= −e e
( ) ( )

.
0 0

(37)

It is convenient at this point to introduce a diagrammatic representation
for the second-quantized operators in the normal form. A second-quantized
operator in the normal form is represented graphically by a vertex consist-
ing of a horizontal line and attached pairs of oriented lines. Each pair of
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lines is associated with a pair containing a creation operator and an annihi-
lation operator (a am n

† ). The outcoming line denotes the creation operator
am

† while the incoming line is designated for the annihilation operator an.
The horizontal line, characteristic of a particular operator, represents ma-
trix elements of the second-quantized operator with indices of incoming
and outgoing lines. Lines directed upwards are particle lines while those di-
rected downwards are designated for holes. Thus the particle-hole creation
operators (aa

† , ai) are given by lines lying above the vertex while the particle-
hole annihilation operators (aa, ai

† ) are associated with those below the ver-
tex. According to generalized Wick’s theorem, a product of two operators in
the normal form can be expressed as a sum of normal products of the oper-
ators without contraction, with all possible single contractions, with all
possible double contractions and so on, between annihilation operators A
from the first operator and creation operators A† from the second one. Dia-
grammatically, all contributions to the sum are obtained by drawing dia-
grams of both operators to form a disconnected diagram (no contractions),
then by drawing diagram of the first operator on the top of the diagram of
the second one to create diagrams with single contractions (by performing
all possible single connections between lines at the bottom of the first dia-
gram with those at the top of the second one), double contractions and so
on. For more details on the diagrammatic representation of the second-
quantized operators, we refer to other papers50. Figure 1 shows examples of
S diagrams (wavy line is used for matrix elements of S) representing S(0), S(1)

and S(2). Double arrows are used to indicate lines which can have active (va-
lence) indices only. Diagrams shown explicitly are those corresponding to
the one- and two-particle part of S

S S S1 1
0

1
1= +( ) ( ) (38)

S S S S2 2
0

2
1

2
2= + +( ) ( ) ( ) . (39)

One can notice that within approximation S ≈ S1 + S2 (FS-CCSD), in princi-
ple, only systems with two valence particles can be described. Assuming
this basic approximation for S and restricting ourselves to Nv = 2, the clus-
ter expansion can be written as

Collect. Czech. Chem. Commun. (Vol. 68) (2003)

Fock-Space Coupled-Cluster Method 121



N P S S S N S S SS[ ] ( [( ) ( ) ( ) ( ) ( ) ( )e ′ = + + + + +2
1

1
2
1

2
2 1

2 1
1 2

1
1

21 ( ) ( ) ( )]) ,1 1
2 2

1 2 2+ S P (40)

where the fact that S(0) is included in H is used, so it does not have to be ex-
plicitly considered. P(2) is introduced to emphasize that systems with two
valence electrons are under consideration at this level of approximation.
Figure 1D presents diagrammatic representation of the expansion.
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FIG. 1
Diagrams representing components of the S operator: S(0) (A), S(1) (B) and S(2) (C). Part (D)
shows diagrammatic representation of the cluster expansion in the two-valence sector with S′ ≈
S S S1

1
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Let us now consider diagrammatic representation of the FS-CC equations
Eqs (35), (36) and return to the redundancy problem. In a general case, all
orthogonal space determinants can be generated from any reference deter-
minant Φα by the action of excitation operators associated with S(2); so the
number of the FS-CC equations is equal to the number of the S(2) cluster
amplitudes. However, we have additional S(0) and S(1) amplitudes to deter-
mine which can produce redundant excitations while acting on the refer-
ence functions Φα. The S(0) and S(1) operators are important if we want to
truncate S(2) at some relatively low particle-rank level and then higher-level
excitations are approximated by S(0), S(1), and their products. Within the
FS-CCSD approximation S(2) ≈ S2

2( ) and the projection subspace of the or-
thogonal space is spanned by determinants with occupied core spin orbitals
and two other particles occupying spin orbitals from which at least one is
virtual (inactive). Using diagrams for representing operators appearing in
the FS-CCSD equations and using diagrammatic techniques based on the
graphical interpretation of Wick’s theorem, one can construct diagram-
matic representation of the FS-CCSD equations. The resulting diagrams
must have two particle lines at the top, which are not simultaneously active
and two active particle lines at the bottom. They represent determinants
from M ⊥ and M. It is convenient to divide diagrams into open, which have
at least one external line inactive, and closed, which have no external lines
at all or have all of them active. Diagrams having parts which are not con-
nected via interaction or oriented lines are called disconnected. If the dis-
connected part is closed, then the diagram is called unlinked. While
constructing diagrams representing the left-hand side of Eq. (35), it is easy
to see that all unlinked diagrams which can be constructed for the second
(renormalization) term are identical with all those unlinked diagrams that
can be generated from the first (principal) term in the equation. Diagrams
representing Eq. (35), after cancellation of unlinked contributions, are
shown in Fig. 2A–2E in a schematic way. Matrix elements of the non-
Hermitian operator H are denoted by double horizontal line. The linked
but disconnected contribution in A containing open part D is irreducible.
However, if we look closer at diagrams D, it can be seen that they represent
diagrammatic representation of a subset of the FS-CC equations for a prob-
lem with one valence particle (one-valence problem). If the one-valence
problem is solved, then D is equal to zero. That leads to disappearance of
disconnected contribution in A and provides additional equations for the
redundant cluster amplitudes. The remaining equations for the one-valence
problem are shown in Fig. 2F and 2G. Again, we have an irreducible linked
but disconnected part which disappears if the zero-valence problem shown
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FIG. 2
Effective Hamiltonian FS-CCSD equations in diagrammatic form
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FIG. 2 (Continued)
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in Fig. 2H is solved. The zero-valence problem represents the SR-CCSD cal-
culation for the core. Now the number of equations is equal to the number
of unknown cluster amplitudes and the redundancy problem is removed.
We can say now that the cluster expansion is valence-universal, i.e., allows
us to solve a hierarchy of problems with the increasing number of valence
particles. Note that these problems must be solved in a hierarchical way
starting with the zero-valence problem which involves only the S(0) opera-
tors. Having S(0), the one-valence problem can be solved and S(1) can be de-
termined. S(0) amplitudes play a role of parameters in the one-valence
calculations. The two-valence problem requires determining S(2), all other
cluster operators (S(0) and S(1)) appearing in the equations are known from
the lower-valence-rank calculations. Contributions to the effective Hamil-
tonian are provided by closed diagrams.

Let us point out several characteristic features of the FS-CC method. First
of all, the excitation operators associated with the cluster operator S cannot
be, in general, classified as those of single, double, etc., replacements in the
reference determinants, they are classified as one-, two-, etc., body opera-
tors. Because of that the M ⊥ space generated by them is identical for all ref-
erence determinants. Thus, the situation is different from that in the
Hilbert-space CC case. Second, due to valence universality, at each valence
level beyond the zero one, the cluster expansion is linear in the unknown
cluster amplitudes. The set of FS-CCSD equations discussed above requires
solving the eigenvalue problem in two steps, first the cluster amplitudes
must be determined from Eq. (35) and then the energies are obtained by
diagonalization of the effective Hamiltonian. This type of approach couples
eigenvalue problems for several states and requires considering all of them
at a time. However, the linearity of the expansion suggests the possibility of
significant simplifications and decoupling of the eigenvalue problem into
separate subproblems. The specific features of the FS-CC method empha-
sized above allow us to obtain a very simple intermediate Hamiltonian ver-
sion of the FS-CC method.

INTERMEDIATE HAMILTONIAN FORMULATION OF THE FOCK-SPACE
COUPLED-CLUSTER METHOD

The idea underlying the intermediate Hamiltonian formalism is to change
the way some contributions from the outer space M ⊥ are calculated21,23. In
many practical situations, some contributions from M ⊥ to the wave func-
tions under consideration can be large causing perturbation expansions to
diverge if a perturbation expansion is used for X, or causing convergence
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problems within nonperturbative schemes like MR-CC methods. The prob-
lem can be related to the occurrence of intruder states, the states which are
not well energetically separated from the model space states22,49,51–53. The
basic formulations of the MR-CC methods assume completeness of the
model space, which makes the intruder state problem difficult to deal with.
The completeness of the model space is essential for connectivity of the CC
equations if the intermediate normalization is imposed. However, if the in-
termediate normalization is abandoned and the normalization condition is
implicitly introduced through the definition of the cluster operators, then
size-extensive incomplete-model-space CC methods can be formulated54,55.
The use of incomplete model spaces allows us to deal more efficiently with
the intruder state problem. The intermediate Hamiltonian technique offers
another way of making multireference schemes more reliable. Within the
effective Hamiltonian formulation, only contributions from the model
space to the wave functions are calculated “exactly”, i.e., by diagonalization
of Heff. The fact whether the diagonalization gives approximate or exact en-
ergies depends on X but not on the way contributions from the model
space are determined. The intermediate Hamiltonian formalism assumes
that also some contributions from the outer space, which can cause prob-
lems when the effective Hamiltanian formulation is used, are determined
by diagonalization. To do this, a subspace of M ⊥ is extracted and called the
intermediate space MI while the original model space M is now called the
main model space. Both subspaces, MI and M, of the new model space M0
play different roles. While M is designated to the determination of m = dim
M eigenvalues, MI is used to provide contributions to these eigenvalues in a
safe way. Both goals are achieved by diagonalization of the intermediate
Hamiltonian which acts in the extended model space M0. Obviously, the
diagonalization gives more than m eigenvalues, but only m of them have,
in general, a well defined physical meaning. The remaining eigenvalues can
be considered spurious.

There are many ways the intermediate Hamiltonians can be con-
structed21,23, some of them can be quite complicated. However, here we
concentrate on the simplest one, which can be easily implemented. But
first let us emphasize the reasons for which the Fock-space CC method is
particularly convenient for the intermediate Hamiltonian reformulation.
Due to the universal character of the cluster operators, the orthogonal
space is uniquely defined for all reference determinants; so the intermedi-
ate space can be easily defined through excitation operators of a given par-
ticle rank acting on the main model space. For example, excitation
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operators associated with S2
2( ) acting on any of the reference functions Φα

generate the same set of excited functions. These are determinants built
from core spin orbitals and two unoccupied (in Φc) spin orbitals from
which at least one is inactive. However, the most important is that, in spite
of generally nonlinear character of the cluster expansion, the expansion is
linear in the unknown cluster amplitudes at each valence level beyond the
zero one. This is, of course, because of the valence-universal strategy of
solving the FS-CC equations. The main-model and the intermediate space
functions are generated by the linear expansion; this suggests that both
contributions to a particular eigenvalue can be calculated in a single-root
calculation. As we will see, that does not guarantee determination of the
cluster amplitudes.

The simplest intermediate Hamiltonian scheme can be introduced by di-
viding the X operator introduced in the effective Hamiltonian formulation
into two parts21

X = Y + Z (41)

Z = PIXP, Y = X – Z , (42)

where PI is the projection on the intermediate space MI. Thus Z represents
excitations to the intermediate space while Y generates excitations to the
reduced orthogonal space M ⊥ .

It can be seen immediately that

(1 + X) = (1 + Y)(1 + Z) . (43)

The intermediate space we select at all levels beyond the zero one is that
generated by the cluster operators, which have to be determined at a partic-
ular i-valence level, namely by the S(i) operators. Note that the intermediate
space becomes identical with the projection space used in the FS-CC equa-
tions; so excitations from the main model space to the orthogonal space
M ⊥ can be given by cluster operators from the lower-valence sectors or by
their products only. Due to the valence-universal strategy of solving the
equations, they are known. Hence, the unknown S operators are contained
in Z while Y is exclusively constructed from the known S operators. Taking
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into account our FS-CCSD scheme with the assumption that the zero-
valence amplitudes are already included in H , we have

Z P N P S S PS S( ) ( ) ( ) ( ) ( )[ ] ( ) ,
( ) ( )1 1

1
1

2
1 11 2

= = ++
I
(1) e

Y(1) = 0 (44)

Z P N P S N S SS S( ) ( ) ( ) ( ) ([ ] ( [ ]
( ) ( )2 2

1
1 1

2 1
1 2

2

1 2

= = + ++
I
(2) e 2 2) ( )) ,P (45)

Y(2) = ( [ ] [ ]) .( ) ( ) ( ) ( ) ( )S N S S N S P2
1

1
1

2
1 1

2 2
1 2 2+ + (46)

The similarity-transformed Hamiltonian can be expressed as

~
( )( ) ( )( ) ,( ) ( ) ( ) ( ) ( )H Z Y H Y Zi i i i i= − − + +1 1 1 1 (47)

and if the FS-CCSD equations are satisfied,

P Z Y H Y Z Pi i i i i i
I
( ) ( )( ) ( )( ) ,( ) ( ) ( ) ( ) ( )1 1 1 1 0− − + + = (48)

then the matrix representation of
~ ( )H i in the model space M Pi i

0 0
( ) ( )( ) has a

structure characteristic of the effective Hamiltonian approach with one off-
diagonal block (PI-P) equal to zero. If so, then the P-P block represents the
effective Hamiltonian and its diagonalization gives m(i) = dim M(i) eigen-
values. Obviously, because of Eq. (48), these eigenvalues are among those
obtained from diagonalization of the transformed Hamiltonian (47) with-
in the entire model space M i

0
( ) . Let us recall here that in such a case all

eigenvalues of P H Pi i i
0 0
( ) ( ) ( )~

can be obtained by separate diagonalizations of
P H Pi i i( ) ( ) ( )~

and P H Pi i i
I I
( ) ( ) ( )~

. If we compare now P H Pi i i
0 0
( ) ( ) ( )~

with

P Y H Y Pi i i i
0 01 1( ) ( ) ( ) ( )( ) ( ) ,− + (49)

we can see that both of them have the same eigenvalues. The reason is that
they are related through similarity transformation within the model space
M i

0
( ) , which does not change the eigenvalues. The operator (49) can be
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called the intermediate Hamiltonian since a subset of its eigenvalues is
identical with eigenvalues given by the effective Hamiltonian. The differ-
ence is in obtaining contributions from the intermediate space which are
now generated during diagonalization of the intermediate Hamiltonian.
Taking into account that Y(i) excites out of the model space M i

0
( ) the final

form of the intermediate Hamiltonian can be written as

H P H Y Pi i i i
int
( ) ( ) ( ) ( )( ) .= +0 01 (50)

H i
int
( ) does not depend on the unknown cluster amplitudes S(i) and so it is

not necessary to determine them to obtain eigenvalues of interest. Having a
single-root diagonalization procedure, one can concentrate on obtaining a
single eigenvalue or can obtain them one by one without the necessity of
considering all of them at a time. Thus, the method is state-specific in a
sense. It is easy to understand why the method is not completely state-
specific if we notice that to construct H i

int
( ) , we need cluster amplitudes from

all lower valence-rank sectors since they are contained in Y(i). Thus, in the
final sector like, for example, in the two-valence sector within the FS-CCSD
scheme, we can focus on obtaining only eigenvalues of interest while in the
lower-valence sectors, all eigenvalues and eigenvectors of the intermediate
Hamiltonian corresponding to the main model spaces must be determined
since only the complete set of eigenvectors allows us to determine the clus-
ter amplitudes. However, it must be stressed that, due to the decoupling of
the eigenvalue problems, they can be obtained one by one.

The structure of the intermediate Hamiltonian in the one- and two-
valence sectors is very simple compared with the standard FS-CCSD equa-
tions. Indeed, at the one-valence level, because of Eq. (44), the intermediate
Hamiltonian is represented by nothing else but the matrix representation
of H in the model space M 0

1( )

H P HPint
( ) ( ) ( ) .1

0
1

0
1= (51)

It should be noted here that the one-valence sector energies do not depend
on the model space, i.e., on the choice of active orbital levels. Again, this
can be easily understood if we recall that the zero-valence level calculation
is the standard single-reference CCSD calculation for the core for which the
selection of active orbitals is irrelevant. Thus, the information about active
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orbital levels is not transfered to H int
( )1 . Contrary to the energies, the one-

valence cluster amplitudes do depend on active spin orbital indices and, to
obtain them, a set of m(1) = dim M(1) (m(1) is the number of active spin
orbitals) eigenvectors of H int

( )1 must be determined. Let the matrix of m(1)

eigenvectors of H int
( )1 consists of the m(1) × m(1) submatrix V0

1( ) containing
the main-model-space coefficients and the remaining submatrix V(1) con-
taining the intermediate-space coefficients. With this notation, the matrix
representation of Z(1) which is built from cluster amplitudes of S1

1( ) and S2
1( ) ,

Eq. (44), is given by

Z V V( ) ( ) ( ) .1 1
0

1 1
=

−
(52)

One can easily realize that since the choice of m(1) eigenvalues and corre-
sponding eigenvectors can be done in many different ways, we can obtain
many solutions of the FS-CCSD equations. The phenomenon is known
from the standard FS-CC applications as the multiple solution effect48.
Here, along with the so-called principal solution for which a selected model
space is the best possible choice, also alternative solutions are obtained in
more or less systematic manner. Within the intermediate Hamiltonian for-
mulation, the phenomenon of multiple solutions finds its simple interpre-
tation47. The standard FS-CC equations (48) are quadratic in the unknown
cluster amplitudes and so, depending on the starting vectors, they can be
converged to different solutions. These different solutions correspond to a
different partitioning of eigenvalues between two diagonal blocks of the
transformed Hamiltonian

~
H. While generation of alternative solutions

within the standard approach requires multiple iterative solutions of the
FS-CC equations, each of them providing a set of m eigenvalues and corre-
sponding cluster amplitudes, the intermediate Hamiltonian approach al-
lows us their a posteriori construction from the available eigenvalues and
eigenvectors of Hint. Moreover, the intermediate Hamiltonian formulation
shows that, if no additional approximation is introduced in the standard
FS-CC equations, the energy provided by Heff corresponding to a given state
should be the same in all possible solutions47. That has not been observed
in the standard FS-CC calculations because of such additional approxima-
tions involved48. The above, of course, concerns not only one- but also
higher-valence rank sectors.

The structure of H int
( )2 is again simple; however, it is not so simple as that

of H int
( )1 . From Eqs (50) and (46), we have
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H P HP P HY Pint
( ) ( ) ( ) ( ) ( ) ( ) .2

0
2

0
2

0
2 2 2= + (53)

The principal part is again the matrix representation of H. The second term
modifies its m(2) columns corresponding to the main-model-space func-
tions. It can be seen that also disconnected diagrams contribute to H int

( )2 and
that they are generated by the second term in Eq. (53). This does not mean,
however, that the approach is not size-extensive. One can even say that the
disconnected part is essential for extensivity since it cancels out discon-
nected terms generated by the diagonalization. Thus, unlike the standard
approach which takes advantage of the Connected Diagram Theorem, the
intermediate Hamiltonian assumes numerical cancellation of disconnected
terms and that is one of its essential features. The reason is that terms gen-
erated by the diagonalization cannot be explicitly considered. The presence
of disconnected diagrams does not complicate diagrammatic representation
of H int

( )2 , which is shown in Fig. 3. One can see a substantial reduction in the
number of diagrams which have to be considered compared with the stan-
dard approach. There is no renormalization term which can be trouble-
some, especially if more efficient iterative schemes, like Newton–Raphson,
are used56. One can also notice disappearance of many other types of dia-
grammatic contributions. The only additional diagrams are disconnected
ones but these are very easy to implement57–59.

However, the most important advantage of the intermediate Hamiltonian
FS-CC formulation is the way the CC equations are solved. This is, of
course, an exemplification of the basic idea underlying the intermediate
Hamiltonian strategy. The intermediate Hamiltonian offers diagonalization
as a way the main-model space and the intermediate space contributions to
the eigenvalues are calculated. The assumption that the intermediate space
contributions should be small becomes less relevant in such a case in view
of the existence of many efficient diagonalization procedures for non-
symmetric matrices. Not only the principal solutions can be reached with-
out problems but also alternative ones are easily accessible. The traditional
Jacobi or modified Jacobi iterative schemes used within the standard formu-
lation in many cases cause tremendous convergence problems. For exam-
ple, it was not possible to converge the FS-CCSD equations in calculations
for Be for a very long time51–53. The Newton–Raphson scheme is effective
but it requires relatively reliable starting vectors and is numerically de-
manding56,60. Thus, the intermediate Hamiltonian FS-CC seems a good
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remedy for convergence problems caused by the intruder state problem and
our calculations for Be has proved this58.

Let us finally mention the methods that also take advantage of some spe-
cific features of the FS-CC scheme. The pioneering works on the energy-
independent partitioning technique by the Mukherjee group must be cited
here25 as well as the recently developed Similarity Transformed Equation of
Motion CC (STEOM-CC) method by Nooijen61. Although the STEOM-CC
method is formulated without any direct reference to the FS-CC scheme,
both methods are closely related62. That becomes especially visible when
the intermediate Hamiltonian version of the FS-CC method is used for
comparison57.

Collect. Czech. Chem. Commun. (Vol. 68) (2003)

Fock-Space Coupled-Cluster Method 133

FIG. 3
Diagrammatic representation of the intermediate Hamiltonian FS-CCSD in the two-valence
sector



CONCLUDING REMARKS

In spite of substantial effort that has been put in extending applicability of
single-reference methods to cases when some, even significant, degree of
quasi-degeneracy is present, development of methods using a linear combi-
nation of several determinants as a reference and attempts to combine
multireference and single-reference approaches to come out with approxi-
mate schemes that are simple yet effective, it seems that further develop-
ment of genuine multireference schemes, in particular those based on the
exponential Ansatz, is highly desirable. In this paper we have reported the
progress that has been recently made within the Fock-space CC method.
Starting with a brief description of the single-reference approaches we have
tried to show fundamental problems occurring when one wants to general-
ize them to multireference cases. These problems are caused by a different
treatment of nondynamic and dynamic correlation required by multi-
reference methods. The effective Hamiltonian formalism which provides
such a treatment of both kinds of correlation leads to quite complicated
formulations and assumes solving eigenvalue problems for several states at
a time. Moreover, in practical applications, methods based on the effective
Hamiltonian formulations seem very vulnerable to intruder states. If both
types of correlation effects are treated in the same manner, which takes
place in the MR-CI approach, then the effective Hamiltonian formalism is
not necessary and the method preserves its formal and computational sim-
plicity. Keeping this in mind and taking advantage of some specific features
of the FS-CC method, we have taken the opportunity given by the interme-
diate Hamiltonian technique to remove the effective Hamiltonian from the
Fock-space CC formulation. This is possible due to the fact that the inter-
mediate Hamiltonian permits the same treatment of nondynamic and a
large portion of dynamic correlation. As a consequence, the resulting
method in some aspects resembles MR-CI, the basic difference being that
MR-CI assumes diagonalization of H, while in the intermediate
Hamiltonian FS-CC method the similarity-transformed Hamiltonian (1 – Y)
H(1 + Y) is diagonalized. The Equation of Motion (EOM) CC method63 is
even more closely related to the intermediate Hamiltonian FS-CC scheme.
The EOM-CC method relies on diagonalization of H in a selected space,
thus for the one-valence sector both methods are identical. The difference
is visible in the two-valence sector where, in addition to H, the Fock-space
CC scheme makes use of the one-valence results contained in Y to perform
a subsequent similarity transformation of slightly different character.
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The intermediate Hamiltonian FS-CC method is equivalent to the stan-
dard FS-CC formulation in all basic versions. As mentioned, due to a differ-
ent treatment of the disconnected contributions, some versions of the
standard FS-CC method may not be easy to reproduce within the interme-
diate Hamiltonian formulation. That mainly concerns those versions in
which the wave function is not well defined due to removing some terms
from the FS-CC equations, like, for example, restricting them to be at most
quadratic in cluster amplitudes48.

Although our considerations have been focused on one specific version of
the FS-CC method, namely that in which the core serves as a vacuum, also
for all other variants of the FS-CC method, similar intermediate Hamil-
tonian formulations are easy to obtain47. In particular, a version with the
HF determinant as a vacuum having selected active hole and active particle
levels is very useful in the direct excitation energy calculations57. These
both kinds of the FS-CC method have been implemented and results of pre-
liminary calculations have been obtained57–59. In the case of our atomically
oriented FS-CCSD/R method with the core as a vacuum, designated to de-
scription of quasi-degenerate ground states and low-lying excited states of
atomic systems, the intermediate Hamiltonian reformulation is not com-
pletely straightforward58. If the spherical symmetry of atomic systems is ex-
plicitly taken into account and the angular part is separated from the CC
equations, the equations are for the radial part only. Due to the specific def-
inition of the radial cluster operators6, the intermediate space as generated
by the cluster excitation operators appears not uniquely defined. To over-
come the problem, a single-reference function is chosen to generate all
main-model and intermediate space functions. The method is invariant
with respect to this choice in the sense that the energy values are not af-
fected by the selection, only the number of states that can be described dif-
fers. Our numerical experience with both versions of the FS-CC method
confirms the efficiency of the intermediate Hamiltonian formulation. We
are currently working on more efficient codes enabling us to perform
large-scale calculations. Another direction of developing the method is an a
posteriori correction evaluating the effect of the three-body cluster opera-
tors.

Let us now summarize with pointing out main advantages of the FS-CC
intermediate Hamiltonian formulation which, in our opinion, can help the
FS-CC implementations reaching the so-called black-box status. They are:
(i) formal simplicity compared with the standard effective Hamiltonian for-
mulation; (ii) replacing the two-step procedure of obtaining cluster ampli-
tudes first and then the energies by diagonalization of the effective
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Hamiltonian with the one-step procedure of solving the eigenvalue prob-
lem of the intermediate Hamiltonian or, if the determination of cluster am-
plitudes is required, with the two-step procedure in which the eigenvalues
are obtained first and then the cluster amplitudes by imposing the interme-
diate normalization on the eigenvectors; (iii) elimination of the effective
Hamiltonian from the equations which leads to decoupling of the eigen-
value problems for individual states; (iv) effective way of solving the equa-
tions enabling us to deal more efficiently with the intruder state problem.
We believe that the above features can make the FS-CC calculations routine.
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